App development

Creating a “Knowledge Database” app to store ChatGPT conversations is a great idea. You can approach this in a way that organizes and retrieves past interactions, which could be useful for reference, learning, or just for tracking progress. Here’s a basic roadmap and considerations for building the app:

1. Define Requirements and Structure

2. Tech Stack Selection

3. Database Schema and Structure

4. Core Features Development

Here’s a breakdown of core functionalities with code snippets:

1. Storing Conversations

A basic Flask API endpoint to save a conversation:

   from flask import Flask, request, jsonify
   from pymongo import MongoClient
   from datetime import datetime

   app = Flask(__name__)
   client = MongoClient("mongodb://localhost:27017/")
   db = client['knowledge_database']
   collection = db['conversations']

   @app.route('/store_conversation', methods=['POST'])
   def store_conversation():
       data = request.json
       data['date'] = datetime.utcnow()
       collection.insert_one(data)
       return jsonify({"status": "success", "message": "Conversation stored!"}), 201

   if __name__ == "__main__":
       app.run(debug=True)

2. Searching Conversations

Basic endpoint to search conversations based on keywords, tags, or date:

   from flask import request
   from bson.json_util import dumps

   @app.route('/search_conversations', methods=['GET'])
   def search_conversations():
       query = {}
       if 'topic' in request.args:
           query['topic'] = request.args.get('topic')
       if 'tags' in request.args:
           query['tags'] = {"$in": request.args.get('tags').split(',')}
       if 'start_date' in request.args and 'end_date' in request.args:
           query['date'] = {
               "$gte": datetime.fromisoformat(request.args.get('start_date')),
               "$lte": datetime.fromisoformat(request.args.get('end_date'))
           }
       results = collection.find(query)
       return dumps(results), 200

3. Retrieving a Conversation by ID

   from bson.objectid import ObjectId

   @app.route('/conversation/<id>', methods=['GET'])
   def get_conversation(id):
       conversation = collection.find_one({"_id": ObjectId(id)})
       if conversation:
           return dumps(conversation), 200
       else:
           return jsonify({"error": "Conversation not found"}), 404

5. Frontend and User Interface

For the frontend, use a UI framework that can call the API endpoints and display stored conversations in a searchable, filterable format.

  1. Homepage: Display recent conversations with a search bar.
  2. Conversation Viewer: View individual conversations in a chat-like format.
  3. Search/Filter Page: Advanced search options for topic, tags, or date.

6. Deployment